首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:FPGA Implementation of Real-Time Compressive Sensing with Partial Fourier Dictionary
  • 本地全文:下载
  • 作者:Yinghui Quan ; Yachao Li ; Xiaoxiao Gao
  • 期刊名称:International Journal of Antennas and Propagation
  • 印刷版ISSN:1687-5869
  • 电子版ISSN:1687-5877
  • 出版年度:2016
  • 卷号:2016
  • DOI:10.1155/2016/1671687
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper presents a novel real-time compressive sensing (CS) reconstruction which employs high density field-programmable gate array (FPGA) for hardware acceleration. Traditionally, CS can be implemented using a high-level computer language in a personal computer (PC) or multicore platforms, such as graphics processing units (GPUs) and Digital Signal Processors (DSPs). However, reconstruction algorithms are computing demanding and software implementation of these algorithms is extremely slow and power consuming. In this paper, the orthogonal matching pursuit (OMP) algorithm is refined to solve the sparse decomposition optimization for partial Fourier dictionary, which is always adopted in radar imaging and detection application. OMP reconstruction can be divided into two main stages: optimization which finds the closely correlated vectors and least square problem. For large scale dictionary, the implementation of correlation is time consuming since it often requires a large number of matrix multiplications. Also solving the least square problem always needs a scalable matrix decomposition operation. To solve these problems efficiently, the correlation optimization is implemented by fast Fourier transform (FFT) and the large scale least square problem is implemented by Conjugate Gradient (CG) technique, respectively. The proposed method is verified by FPGA (Xilinx Virtex-7 XC7VX690T) realization, revealing its effectiveness in real-time applications.
国家哲学社会科学文献中心版权所有