首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Multiclass Posterior Probability Twin SVM for Motor Imagery EEG Classification
  • 本地全文:下载
  • 作者:Qingshan She ; Yuliang Ma ; Ming Meng
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2015
  • 卷号:2015
  • DOI:10.1155/2015/251945
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Motor imagery electroencephalography is widely used in the brain-computer interface systems. Due to inherent characteristics of electroencephalography signals, accurate and real-time multiclass classification is always challenging. In order to solve this problem, a multiclass posterior probability solution for twin SVM is proposed by the ranking continuous output and pairwise coupling in this paper. First, two-class posterior probability model is constructed to approximate the posterior probability by the ranking continuous output techniques and Platt’s estimating method. Secondly, a solution of multiclass probabilistic outputs for twin SVM is provided by combining every pair of class probabilities according to the method of pairwise coupling. Finally, the proposed method is compared with multiclass SVM and twin SVM via voting, and multiclass posterior probability SVM using different coupling approaches. The efficacy on the classification accuracy and time complexity of the proposed method has been demonstrated by both the UCI benchmark datasets and real world EEG data from BCI Competition IV Dataset 2a, respectively.
国家哲学社会科学文献中心版权所有