首页    期刊浏览 2025年01月06日 星期一
登录注册

文章基本信息

  • 标题:Review of Evolutionary Optimization Algorithms for Test Case Minimization
  • 本地全文:下载
  • 作者:Aditya Vikram Sharma
  • 期刊名称:International Journal of Engineering and Computer Science
  • 印刷版ISSN:2319-7242
  • 出版年度:2015
  • 卷号:4
  • 期号:7
  • 页码:13292-13297
  • 出版社:IJECS
  • 摘要:Multi-objective test suite minimization problem is to select a set of test cases from the available test suite while optimizing themulti objectives like code coverage, cost and fault history.[1] Regression Test suite optimization is an effective technique to reduce timeand cost of testing. Many researchers have used computational intelligence techniques to enhance the effectiveness of test suite. Theseapproaches optimize test suite for a single objective. Introduction of nature inspired algorithms like GA, PSO and BFO may be used tooptimize test suite for multi-objective selection criteria. Main focus of our approach is to find a test suite that is optimal for multi-objectiveregression testing.[2]
  • 关键词:Regression testing; Test suite minimization;Bacterial Foraging Optimization Algorithm
国家哲学社会科学文献中心版权所有