首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:A Genetic Algorithm Approach for Clustering
  • 本地全文:下载
  • 作者:Mamta Mor ; Poonam Gupta ; Priyanka Sharma
  • 期刊名称:International Journal of Engineering and Computer Science
  • 印刷版ISSN:2319-7242
  • 出版年度:2014
  • 卷号:3
  • 期号:6
  • 页码:6442-6447
  • 出版社:IJECS
  • 摘要:The paper deals with the applicability of GA to clustering and compares it with the standard K-means clustering technique. Kmeansclustering results are extremely sensitive to the initial centroids, so many a times it results in sub-optimal solutions. On the other handthe GA approach results in optimal solutions and finds globally optimal disjoint partitions. Fitness calculated on the basis of intra-clusterand inter-cluster distance is the performance evaluation standard in this paper. The experimental results show that the proposed GA is moreeffective than K-means and converges to more accurate clusters.
  • 关键词:clustering; genetic algorithm; k-means; fitness function
国家哲学社会科学文献中心版权所有