首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Automatic Deep Web Query Results User Satisfaction Evaluation with Click-through Data Analysis
  • 本地全文:下载
  • 作者:Zhen Liu ; Yong Feng ; Huijuan Wang
  • 期刊名称:International Journal of Smart Home
  • 印刷版ISSN:1975-4094
  • 出版年度:2014
  • 卷号:8
  • 期号:5
  • 页码:25-32
  • DOI:10.14257/ijsh.2014.8.5.03
  • 出版社:SERSC
  • 摘要:We browse through hundreds of Deep web pages everyday to find information of interest. We feel happy when Deep web browsing operations provide us with necessary information; otherwise, we feel bitter. Now, the measurement of this user satisfaction has become a hot research topic. In this paper, we propose a click-through-data-based and unsupervised user satisfaction evaluation system, CNEITE, to evaluate the user satisfaction of Deep Web query result pages. It applies query type classifying, navigational query evaluating, informational/transactional query evaluating to solve the challenging tasks. We evaluated our CNEITE system on the AOL data sets, experimental results show that CNEITE achieves higher classify precision than a widely used classify method , Dtree, and higher annotate answer accuracy than method proposed in [17].
  • 关键词:Automatic user satisfaction evaluation; Deep Web; click-through data ; analysis
国家哲学社会科学文献中心版权所有