首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:An Effective Intrusion Detection System Based onMulti-layers Mining Methods
  • 本地全文:下载
  • 作者:Ming Yao
  • 期刊名称:International Journal of Security and Its Applications
  • 印刷版ISSN:1738-9976
  • 出版年度:2014
  • 卷号:8
  • 期号:5
  • 页码:311-322
  • DOI:10.14257/ijsia.2014.8.5.28
  • 出版社:SERSC
  • 摘要:In this paper, we propose a multi-layer selection and mining methods for effective intrusion detection, which utilize feature selection, classification, clustering and evidence theory for decision making. In the experiments, DARPA KDD-99 intrusion detection data set is used for evaluation. It shows that our proposed classifier not only classifies and separates the normal and abnormal data, but also reduces false positive and false negative besides detecting all four kinds of attacks.
  • 关键词:Network security; Intrusion detection; Feature selection; Classification; ; Clustering; Dempster-Shafertheory
国家哲学社会科学文献中心版权所有