首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Predictor Variables' Influence on Classification Outcome in Insurance Fraud Detection
  • 本地全文:下载
  • 作者:Saliu Adam Muhammad ; Xiangtao Chen ; Liao Bo
  • 期刊名称:International Journal of Hybrid Information Technology
  • 印刷版ISSN:1738-9968
  • 出版年度:2015
  • 卷号:8
  • 期号:5
  • 页码:41-50
  • DOI:10.14257/ijhit.2015.8.5.05
  • 出版社:SERSC
  • 摘要:In fraud detection paradigms, the role of predictor variables cannot be overemphasized particularly when analytical tools – such as statistical, machine learning and artificial intelligent tools are employed. These variables or attributes are used to organize records of data in database tables. The combination of the values of these attributes usually affects which class of a target variable a record or an observation would belong. In this paper, we propose an algorithm and employ spreadsheet 'count' 'count if' and 'filtering' functionalities (techniques) to take toll on how the individual attribute may affect the prediction of the class of an observation in an insurance dataset of 5000 observations. The analysis showed that indeed, the individual predictor attribute affects the outcome of the target variable (legal or fraudulent) differently.
  • 关键词:predictor variable; insurance; fraud detection; target variable; observation ; /instance; premium
国家哲学社会科学文献中心版权所有