首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:Network Traffic Prediction Based on SVR Improved By Chaos Theory and Ant Colony Optimization
  • 本地全文:下载
  • 作者:Yonglin Liang ; Lirong Qiu
  • 期刊名称:International Journal of Future Generation Communication and Networking
  • 印刷版ISSN:2233-7857
  • 出版年度:2015
  • 卷号:8
  • 期号:1
  • 页码:69-78
  • DOI:10.14257/ijfgcn.2015.8.1.08
  • 出版社:SERSC
  • 摘要:Network traffic prediction is one of the significant issues. The model for network traffic prediction should meet the following requirements. First, the model should be taken into consideration the characteristics of the network flow such as burstiness, long-range dependence, periodicity and self-similarity. To achieve this, we decompose the original flow in a multi-scale manner into a set of linear and stable representations, and introduce chaos theory to improve the diversity and search coverage. Second, the model should be efficient and accurate. To this end, we propose a prediction model based on SVR, and utilize Ant Colony Optimization (ACO) algorithm for parameter selection of SVR. Besides, we conduct experiments to evaluate the proposed model.
  • 关键词:Network traffic prediction; SVR; Chaos theory; Ant Colony Optimization ; (ACO)
国家哲学社会科学文献中心版权所有