首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Sentiment Classification of Portuguese News Headlines
  • 本地全文:下载
  • 作者:António Paulo Santos ; Carlos Ramos ; Nuno C. Marques
  • 期刊名称:International Journal of Software Engineering and Its Applications
  • 印刷版ISSN:1738-9984
  • 出版年度:2015
  • 卷号:9
  • 期号:9
  • 页码:9-18
  • DOI:10.14257/ijseia.2015.9.9.02
  • 出版社:SERSC
  • 摘要:This paper addresses the problem of classifying news headlines into sentiment categories. Using a supervised approach, we train a classifier for classify ing each news headline as positive, negative, or neutral. A news headline is considered positive if it is associated with good things, negative if it is associated with bad things, and neutral in the remaining cases. The experiments show an accuracy that ranges from 59.00% to 63.50% when syntactic features (argument1-verb-argument2 relations) are combined with other features. The accuracy ranges from 57.50% to 62.5% when these relations are not used.
  • 关键词:sentiment classification; news headlines
国家哲学社会科学文献中心版权所有