首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Testing Booleanity and the Uncertainty Principle
  • 本地全文:下载
  • 作者:Tom Gur ; Omer Tamuz
  • 期刊名称:Chicago Journal of Theoretical Computer Science
  • 印刷版ISSN:1073-0486
  • 出版年度:2013
  • 卷号:2013
  • 出版社:MIT Press ; University of Chicago, Department of Computer Science
  • 摘要:

    Let $f:\{-1,1\}^n \to$ R be a real function on the hypercube, given by its discrete Fourier expansion, or, equivalently, represented as a multilinear polynomial. We say that it is Boolean if its image is in $\{-1,1\}$.

    We show that every function on the hypercube with a sparse Fourier expansion must either be Boolean or far from Boolean. In particular, we show that a multilinear polynomial with at most $k$ terms must either be Boolean, or output values different than $-1$ or $1$ for a fraction of at least $2/(k+2)^2$ of its domain.

    It follows that given oracle access to $f$, together with the guarantee that its representation as a multilinear polynomial has at most $k$ terms, one can test Booleanity using $O(k^2)$ queries. We show an $\Omega(k)$ queries lower bound for this problem.

    Our proof crucially uses Hirschman's entropic version of Heisenberg's uncertainty principle

国家哲学社会科学文献中心版权所有