首页    期刊浏览 2024年12月15日 星期日
登录注册

文章基本信息

  • 标题:A Modified Group Search Optimizer for Feature Selection and Parameter Determination of SVM
  • 本地全文:下载
  • 作者:K. Joshil Raj ; S Siva Sathya ; Kalyan Nandi
  • 期刊名称:International Journal of Soft Computing & Engineering
  • 电子版ISSN:2231-2307
  • 出版年度:2015
  • 卷号:5
  • 期号:2
  • 页码:32-36
  • 出版社:International Journal of Soft Computing & Engineering
  • 摘要:Support vector machine (SVM) is a popular pattern classification method with many diverse applications. Group Search Optimizer (GSO) is a new population based optimization algorithm inspired by animal searching behavior for developing optimum searching strategies to find out solutions for continuous optimization problems. This paper presents an experimental analysis of modifications to classical GSO & studies its effects on a GSO-SVM hybrid combination for feature selection and kernel parameters optimization. In the proposed algorithm, three modifications are introduced over classical GSO to improve its global search mechanism. The quality and effectiveness of the proposed methodology has been evaluated on standard machine learning datasets.
  • 关键词:Evolutionary algorithm; Group Search Optimizer;GSO; Support Vector Machine; Machine learning; Feature;Selection; Kernel parameters
国家哲学社会科学文献中心版权所有