首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:On the NP-Hardness of Approximating Ordering-Constraint Satisfaction Problems
  • 本地全文:下载
  • 作者:Per Austrin ; Rajsekar Manokaran ; Cenny Wenner
  • 期刊名称:Theory of Computing
  • 印刷版ISSN:1557-2862
  • 电子版ISSN:1557-2862
  • 出版年度:2015
  • 卷号:11
  • 页码:257-283
  • 出版社:University of Chicago
  • 摘要:We show improved $\mathsf{NP}$-hardness of approximating Ordering-Constraint Satisfaction Problems (OCSPs). For the two most well-studied OCSPs, Maximum Acyclic Subgraph and Maximum Betweenness, we prove $\mathsf{NP}$-hard approximation factors of ${14}/{15}+\varepsilon$ and ${1}/{2}+\varepsilon$. When it is hard to approximate an OCSP by a constant better than taking a uniformly-at-random ordering, then the OCSP is said to be approximation resistant. We show that the Maximum Non- Betweenness Problem is approximation resistant and that there are width-$m$ approximation-resistant OCSPs accepting only a fraction $1 / (m/2)!$ of assignments. These results provide the first examples of approximation-resistant OCSPs subject only to $\mathsf{P} \neq \mathsf{NP}$
  • 关键词:acyclic subgraph; APPROX; approximation; approximation resistance; betweenness; constraint satisfaction; CSPs; feedback arc set; hypercontractivity; NP-completeness; orderings; PCP; probabilistically checkable proofs
国家哲学社会科学文献中心版权所有