首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:A Regularity Lemma and Low-Weight Approximators for Low-Degree Polynomial Threshold Functions
  • 本地全文:下载
  • 作者:Ilias Diakonikolas ; Rocco A. Servedio ; Li-Yang Tan
  • 期刊名称:Theory of Computing
  • 印刷版ISSN:1557-2862
  • 电子版ISSN:1557-2862
  • 出版年度:2014
  • 卷号:10
  • 页码:27-53
  • 出版社:University of Chicago
  • 摘要:$ \newcommand{\sign}{{\mathrm{sign}}} $

    We give a “regularity lemma” for degree-$d$ polynomial threshold functions (PTFs) over the Boolean cube $\{-1,1\}^n$. Roughly speaking, this result shows that every degree-$d$ PTF can be decomposed into a constant number of subfunctions such that almost all of the subfunctions are close to being regular PTFs. Here a “regular” PTF is a PTF $\sign(p(x))$ where the influence of each variable on the polynomial $p(x)$ is a small fraction of the total influence of $p$.

    As an application of this regularity lemma, we prove that for any constants $d \geq 1, \epsilon > 0$, every degree-$d$ PTF over $n$ variables can be approximated to accuracy $\epsilon$ by a constant-degree PTF that has integer weights of total magnitude $O_{\epsilon,d}(n^d)$. This weight bound is shown to be optimal up to logarithmic factors

  • 关键词:complexity theory; Boolean functions; polynomials; threshold functions
国家哲学社会科学文献中心版权所有