首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Comparison of Various Clustering Algorithms
  • 本地全文:下载
  • 作者:Garima Sehgal ; Dr. Kanwal Garg
  • 期刊名称:International Journal of Computer Science and Information Technologies
  • 电子版ISSN:0975-9646
  • 出版年度:2014
  • 卷号:5
  • 期号:3
  • 页码:3074-3076
  • 出版社:TechScience Publications
  • 摘要:A comparative study of clustering algorithms across three different datasets is performed. The algorithms under investigation are partitioning based i.e K-means, Farthest First, Expectation maximization and Non Partitioning based i.e Density based, Hierarchical based and Cobweb. All these algorithms are compared according to the factors size of the dataset, number of clusters and time taken to form clusters. Performance of clustering algorithms are compared using clustering tool WEKA(version 3.7.10).
  • 关键词:K-means algorithm; Farthest First algorithm;Expectation Maximization algorithm; Density based algorithm;Hierarchical based algorithm; Cobweb algorithm; WEKA tool
国家哲学社会科学文献中心版权所有