首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Speech Denoising via Low-Rank and Sparse Matrix Decomposition
  • 本地全文:下载
  • 作者:Huang, Jianjun ; Zhang, Xiongwei ; Zhang, Yafei
  • 期刊名称:ETRI Journal
  • 印刷版ISSN:1225-6463
  • 电子版ISSN:2233-7326
  • 出版年度:2014
  • 卷号:36
  • 期号:1
  • 页码:167-170
  • DOI:10.4218/etrij.14.0213.0033
  • 语种:English
  • 出版社:Electronics and Telecommunications Research Institute
  • 摘要:In this letter, we propose an unsupervised framework for speech noise reduction based on the recent development of low-rank and sparse matrix decomposition. The proposed framework directly separates the speech signal from noisy speech by decomposing the noisy speech spectrogram into three submatrices: the noise structure matrix, the clean speech structure matrix, and the residual noise matrix. Evaluations on the Noisex-92 dataset show that the proposed method achieves a signal-to-distortion ratio approximately 2.48 dB and 3.23 dB higher than that of the robust principal component analysis method and the non-negative matrix factorization method, respectively, when the input SNR is -5 dB.
  • 关键词:Low-rank and sparse matrix decomposition;noise reduction;robust principal component analysis
国家哲学社会科学文献中心版权所有