首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Detection of Outlier-Communities using Minimum Spanning Tree
  • 本地全文:下载
  • 作者:S. Chidambaranathan ; S. John Peter
  • 期刊名称:Journal of Emerging Trends in Computing and Information Sciences
  • 电子版ISSN:2079-8407
  • 出版年度:2011
  • 卷号:2
  • 期号:11
  • 页码:608-614
  • 出版社:ARPN Publishers
  • 摘要:Community (also known as clusters) is a group of nodes with dense connection. Detecting outlier-communities from database is a big desire. In this paper we propose a novel Minimum Spanning Tree based algorithm for detecting outlier-communities from complex networks. The algorithm uses a new community validation criterion based on the geometric property of data partition of the data set in order to find the proper number of communities. The algorithm works in two phases. The first phase of the algorithm creates optimal number of communities, whereas the second phase of the algorithm finds outlier-communities.
  • 关键词:Euclidean minimum spanning tree; Clustering; Eccentricity; Center; Community validity; Community Separation; Outliers
国家哲学社会科学文献中心版权所有