首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Bayesian Angular Superresolution Algorithm for Real-Aperture Imaging in Forward-Looking Radar
  • 本地全文:下载
  • 作者:Yuebo Zha ; Yin Zhang
  • 期刊名称:Information
  • 电子版ISSN:2078-2489
  • 出版年度:2015
  • 卷号:6
  • 期号:4
  • 页码:650-668
  • DOI:10.3390/info6040650
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:In real aperture imaging, the limited azimuth angular resolution seriously restricts the applications of this imaging system. This report presents a maximum a posteriori (MAP) approach based on the Bayesian framework for high angular resolution of real aperture radar. First, Rayleigh statistic and the lq norm (for 0 < q ≤ 1) sparse constraint are considered to express the clutter property and target scattering coefficient distribution, respectively. Then, the MAP objective function is established according to the hypotheses above. At last, a recursive iterative strategy is developed to estimate the original target scattering coefficient distribution and clutter statistic. The comparison of simulations and experimental results are given to verify the performance of our proposed algorithm.
  • 关键词:real aperture radar; angular superresolution; Bayesian framework; sparse constraint; maximum a posteriori real aperture radar ; angular superresolution ; Bayesian framework ; sparse constraint ; maximum a posteriori
国家哲学社会科学文献中心版权所有