首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Empirical Evaluation of Classifiers’ Performance Using Data Mining Algorithm
  • 本地全文:下载
  • 作者:Sanjay Kumar Sen ; Dr. Sujata Dash
  • 期刊名称:International Journal of Computer Trends and Technology
  • 电子版ISSN:2231-2803
  • 出版年度:2015
  • 卷号:21
  • 期号:3
  • 页码:146-155
  • DOI:10.14445/22312803/IJCTT-V21P128
  • 出版社:Seventh Sense Research Group
  • 摘要:The field of data mining and knowledge discovery in databases (KDD) has been growing in leaps and bounds, and has shown great potential for the future[10]. Data classification is an important task in KDD (knowledge discovery in databases) process. It has several potential applications. The performance of a classifier is strongly dependent on the learning algorithm. In this paper, we describe our experiment on data classification considering several classification models. We tabulate the experimental results and present a comparative analysis thereof.
  • 关键词:Knowledge discovery in databases; classifier; data classification.
国家哲学社会科学文献中心版权所有