首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:An Efficient Information Extraction Model for personal named entity
  • 本地全文:下载
  • 作者:Teena A.Sunny ; G. Naveen Sundar
  • 期刊名称:International Journal of Computer Trends and Technology
  • 电子版ISSN:2231-2803
  • 出版年度:2013
  • 卷号:4
  • 期号:3-3
  • 出版社:Seventh Sense Research Group
  • 摘要:Named entity recognition (NER) is one of the key techniques in language processing tasks such as information extraction. This paper focuses mainly on recognition of named entity using distance based clustering and attributes extraction patterns. The ultimate goal of the paper is to reduce ambiguity of person names with higher precision and recall and to avoid duplicity.
  • 关键词:Unsupervised learning; precision; recall; Ambiguity; Bigrams; attribute extraction; clustering; tokens
国家哲学社会科学文献中心版权所有