摘要:Coronatine (COR) is a phytotoxin produced by Pseudomonas syringae . Its structure is similar to Jasmonates, which play a number of diverse roles in plant defense. Both have the COI1 plant receptor, so coronatine can manipulate plant hormone signaling to access nutrients and counteract defense responses. In addition to the hormone system, coronatine affects plant nitrogenous metabolism and chloroplast ultrastructure. In this study, we first examined a typical nitrogen-losing phenotype, and used the polyacrylamide gel approach to demonstrate soluble total protein patterns in a time-course experiment under different temperature conditions. We then employed dimensional gel electrophoresis technology (2-DE) and MALDI-TOF-MS to sequester and identify the sensitive proteins. We found a total of 27 coronatine sensitive proteins, 22 of which were located in the chloroplast and 6 of which were directly involved in photosynthesis. Finally, we measured levels of chlorophyll and photosynthetic performance to reveal the phenotypic effect of these proteins. Taken together, these results demonstrated that coronatine enhanced heat tolerance by regulating nitrogenous metabolism and chloroplast ultrastructure to maintain photosynthetic performance and reduce yield loss under heat stress.