摘要:The Durbin-Watson (DW) test is the most widely used test for autocorrelation of a first order in regression analysis. The critical value of DW test depends on X matrix. As a result, the DW test statistic falls sometime in the inconclusive region. For large sample, the DW test can be used for normal distribution. In this paper, we proposed a bootstrap critical value for small sample and compared the power properties with other procedures. Monte-Carlo study shows that the bootstrapped DW test performs better than the usual DW test with the help of power.