首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Sensor Fusion for Accurate Ego-Motion Estimation in a Moving Platform
  • 本地全文:下载
  • 作者:Chuho Yi ; Jungwon Cho
  • 期刊名称:International Journal of Distributed Sensor Networks
  • 印刷版ISSN:1550-1329
  • 电子版ISSN:1550-1477
  • 出版年度:2015
  • 卷号:2015
  • DOI:10.1155/2015/831780
  • 出版社:Hindawi Publishing Corporation
  • 摘要:With the coming of “Internet of things” (IoT) technology, many studies have sought to apply IoT to mobile platforms, such as smartphones, robots, and moving vehicles. An estimation of ego-motion in a moving platform is an essential and important method to build a map and to understand the surrounding environment. In this paper, we describe an ego-motion estimation method using a vision sensor that is widely used in IoT systems. Then, we propose a new fusion method to improve the accuracy of motion estimation with other sensors in cases where there are limits in using only a vision sensor. Generally, because the dimension numbers of data that can be measured for each sensor are different, by simply adding values or taking averages, there is still a problem in that the answer will be biased to one of the data sources. These problems are the same when using the weighting sum using the covariance of the sensors. To solve this problem, in this paper, using relatively accurate sensor data (unfortunately, low dimension), the proposed method was used to estimate by creating artificial data to improve the accuracy (even of unmeasured dimensions).
国家哲学社会科学文献中心版权所有