首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:A Personal Credit Rating Prediction Model Using Data Mining in Smart Ubiquitous Environments
  • 本地全文:下载
  • 作者:Jae Kwon Bae ; Jinhwa Kim
  • 期刊名称:International Journal of Distributed Sensor Networks
  • 印刷版ISSN:1550-1329
  • 电子版ISSN:1550-1477
  • 出版年度:2015
  • 卷号:2015
  • DOI:10.1155/2015/179060
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This study suggests a methodology called a smart ubiquitous data mining (UDM) that consolidates homogeneous models in a smart ubiquitous computing environment. It tests the suggested model with financial datasets. It basically induces rules from the dataset using diverse rule extraction algorithms and combines the rules to build a metamodel. This paper builds several personal credit rating prediction models based on the UDM and benchmarks their performance against other models which employ logistic regression (LR), Bayesian style frequency matrix (BFM), multilayer perceptron (MLP), classification tree methods (C5.0), and neural network rule extraction (NR) algorithms. To verify the feasibility and effectiveness of UDM, personal credit data and personal loan data provided by a Financial Holding Company (FHC) were used in this study. Empirical results indicated that UDM outperforms other models such as LR, BFM, MLP, C5.0, and NR.
国家哲学社会科学文献中心版权所有