首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Deep Neural Networks with Multistate Activation Functions
  • 本地全文:下载
  • 作者:Chenghao Cai ; Yanyan Xu ; Dengfeng Ke
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2015
  • 卷号:2015
  • DOI:10.1155/2015/721367
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We propose multistate activation functions (MSAFs) for deep neural networks (DNNs). These MSAFs are new kinds of activation functions which are capable of representing more than two states, including the N-order MSAFs and the symmetrical MSAF. DNNs with these MSAFs can be trained via conventional Stochastic Gradient Descent (SGD) as well as mean-normalised SGD. We also discuss how these MSAFs perform when used to resolve classification problems. Experimental results on the TIMIT corpus reveal that, on speech recognition tasks, DNNs with MSAFs perform better than the conventional DNNs, getting a relative improvement of 5.60% on phoneme error rates. Further experiments also reveal that mean-normalised SGD facilitates the training processes of DNNs with MSAFs, especially when being with large training sets. The models can also be directly trained without pretraining when the training set is sufficiently large, which results in a considerable relative improvement of 5.82% on word error rates.
国家哲学社会科学文献中心版权所有