首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:A Random Compressive Sensing Method for Airborne Clustering WSNs
  • 本地全文:下载
  • 作者:Wei Zhou ; Bo Jing ; Yifeng Huang
  • 期刊名称:International Journal of Distributed Sensor Networks
  • 印刷版ISSN:1550-1329
  • 电子版ISSN:1550-1477
  • 出版年度:2015
  • 卷号:2015
  • DOI:10.1155/2015/502853
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In order to reduce the energy consumption of the cluster members in WSNs, this paper proposes a random compressive sensing data acquisition scheme for airborne clustering WSNs. In this scheme, hardware resource limited cluster members sample the input signals with random sampling sequence and then transmit the sampling signals to the cluster head or Sink to reconstruct. Aimed at improving the reconstruction performance of this scheme, this paper puts forward a new MP reconstruction method based on composite chaotic-genetic algorithm, which combines the excellent local searching characteristics of chaos theory with the powerful global search ability of genetic algorithm. The experimental result shows that this scheme is very suitable for the hardware resource limited clustering WSNs. On the one hand, the reconstruction precision of the composite chaotic-genetic MP method can reach a magnitude of 10−15, and the average search speed is about 37 time that of the MP reconstruction method, which can effectively improve the reconstruction performance of the cluster head or Sink; on the other hand, by diminishing the sampling frequency to 1/8 of the original sampling frequency, the random compressive sensing technique can dramatically reduce the sampling quantity and the energy consumption of the cluster members, with the reconstruction precision reaching a magnitude of 10−7.
国家哲学社会科学文献中心版权所有