首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Examination of a climate stabilization pathway via zero-emissions using Earth system models
  • 本地全文:下载
  • 作者:Daisuke Nohara ; J Tsutsui ; S Watanabe
  • 期刊名称:Environmental Research Letters
  • 印刷版ISSN:1748-9326
  • 电子版ISSN:1748-9326
  • 出版年度:2015
  • 卷号:10
  • 期号:9
  • 页码:095005
  • DOI:10.1088/1748-9326/10/9/095005
  • 语种:English
  • 出版社:IOP Publishing Ltd
  • 摘要:Long-term climate experiments up to the year 2300 have been conducted using two full-scale complex Earth system models (ESMs), CESM1(BGC) and MIROC-ESM, for a CO2 emissions reduction pathway, termed Z650, where annual CO2 emissions peak at 11 PgC in 2020, decline by 50% every 30 years, and reach zero in 2160. The results have been examined by focusing on the approximate linear relationship between the temperature increase and cumulative CO2 emissions. Although the temperature increase is nearly proportional to the cumulative CO2 emissions in both models, this relationship does not necessarily provide a robust basis for the restriction of CO2 emissions because it is substantially modulated by non-CO2 forcing. CO2-induced warming, estimated from the atmospheric CO2 concentrations in the models, indicates an approximate compensation of nonlinear changes between fast-mode responses to concentration changes at less than 10 years and slow-mode response at more than 100 years due to the thermal inertia of the ocean. In this estimate, CESM1(BGC) closely approximates a linear trend of 1.7 °C per 1000 PgC, whereas MIROC-ESM shows a deviation toward higher temperatures after the emissions peak, from 1.8 °C to 2.4 °C per 1000 PgC over the range of 400–850 PgC cumulative emissions corresponding to years 2000–2050. The evolution of temperature under zero emissions, 2160–2300, shows a slight decrease of about 0.1 °C per century in CESM1(BGC), but remains almost constant in MIROC-ESM. The fast-mode response toward the equilibrium state decreases with a decrease in the airborne fraction owing to continued CO2 uptake (carbon cycle inertia), whereas the slow-mode response results in more warming owing to continued heat uptake (thermal inertia). Several specific differences are noted between the two models regarding the degree of this compensation and in some key regional aspects associated with sustained warming and long-term climate risks. Overall, elevated temperatures continue for at least a few hundred years under zero emissions.
国家哲学社会科学文献中心版权所有