首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Improved Generalization in Recurrent Neural Networks Using the Tangent Plane Algorithm
  • 本地全文:下载
  • 作者:P May ; E Zhou ; C. W. Lee
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2014
  • 卷号:5
  • 期号:3
  • DOI:10.14569/IJACSA.2014.050317
  • 出版社:Science and Information Society (SAI)
  • 摘要:The tangent plane algorithm for real time recurrent learning (TPA-RTRL) is an effective online training method for fully recurrent neural networks. TPA-RTRL uses the method of approaching tangent planes to accelerate the learning processes. Compared to the original gradient descent real time recurrent learning algorithm (GD-RTRL) it is very fast and avoids problems like local minima of the search space. However, the TPA-RTRL algorithm actively encourages the formation of large weight values that can be harmful to generalization. This paper presents a new TPA-RTRL variant that encourages small weight values to decay to zero by using a weight elimination procedure built into the geometry of the algorithm. Experimental results show that the new algorithm gives good generalization over a range of network sizes whilst retaining the fast convergence speed of the TPA-RTRL algorithm.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; real time recurrent learning; tangent plane; generalization; weight elimination; temporal pattern recognition; non-linear process control
国家哲学社会科学文献中心版权所有