首页    期刊浏览 2025年01月22日 星期三
登录注册

文章基本信息

  • 标题:A Comparative Study of Meta-heuristic Algorithms for Solving Quadratic Assignment Problem
  • 本地全文:下载
  • 作者:Gamal Abd El-Nasser A. Said ; Abeer M. Mahmoud ; El-Sayed M. El-Horbaty
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2014
  • 卷号:5
  • 期号:1
  • DOI:10.14569/IJACSA.2014.050101
  • 出版社:Science and Information Society (SAI)
  • 摘要:Quadratic Assignment Problem (QAP) is an NP-hard combinatorial optimization problem, therefore, solving the QAP requires applying one or more of the meta-heuristic algorithms. This paper presents a comparative study between Meta-heuristic algorithms: Genetic Algorithm, Tabu Search, and Simulated annealing for solving a real-life (QAP) and analyze their performance in terms of both runtime efficiency and solution quality. The results show that Genetic Algorithm has a better solution quality while Tabu Search has a faster execution time in comparison with other Meta-heuristic algorithms for solving QAP.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Quadratic Assignment Problem (QAP); Genetic Algorithm (GA); Tabu Search (TS); Simulated Annealing (SA); Performance Analysis
国家哲学社会科学文献中心版权所有