首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:A New Image-Based Model For Predicting Cracks In Sewer Pipes
  • 本地全文:下载
  • 作者:Iraky Khalifa ; Amal Elsayed Aboutabl ; Gamal Sayed AbdelAziz Barakat
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2013
  • 卷号:4
  • 期号:12
  • DOI:10.14569/IJACSA.2013.041210
  • 出版社:Science and Information Society (SAI)
  • 摘要:Visual inspection by a human operator has been mostly used up till now to detect cracks in sewer pipes. In this paper, we address the problem of automated detection of such cracks. We propose a model which detects crack fractures that may occur in weak areas of a network of pipes. The model also predicts the level of dangerousness of the detected cracks among five crack levels. We evaluate our results by comparing them with those obtained by using the Canny algorithm. The accuracy percentage of this model exceeds 90% and outperforms other approaches.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Visual inspection; Sewer pipes; Canny algorithm; Crack detection
国家哲学社会科学文献中心版权所有