期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2012
卷号:3
期号:6
DOI:10.14569/IJACSA.2012.030607
出版社:Science and Information Society (SAI)
摘要:Classifying text data has been an active area of research for a long time. Text document is multifaceted object and often inherently ambiguous by nature. Multi-label learning deals with such ambiguous object. Classification of such ambiguous text objects often makes task of classifier difficult while assigning relevant classes to input document. Traditional single label and multi class text classification paradigms cannot efficiently classify such multifaceted text corpus. Through our paper we are proposing a novel label propagation approach based on semi supervised learning for Multi Label Text Classification. Our proposed approach models the relationship between class labels and also effectively represents input text documents. We are using semi supervised learning technique for effective utilization of labeled and unlabeled data for classification .Our proposed approach promises better classification accuracy and handling of complexity and elaborated on the basis of standard datasets such as Enron, Slashdot and Bibtex.