首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Comparison of 2D and 3D Local Binary Pattern in Lung Cancer Diagnosis
  • 本地全文:下载
  • 作者:Kohei Arai ; Yeni Herdiyeni ; Hiroshi Okumura
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2012
  • 卷号:3
  • 期号:4
  • DOI:10.14569/IJACSA.2012.030416
  • 出版社:Science and Information Society (SAI)
  • 摘要:Comparative study between 2D and 3D Local Binary Patter (LBP) methods for extraction from Computed Tomography (CT) imagery data in lung cancer diagnosis is conducted. The lung image classification is performed using probabilistic neural network (PNN) with histogram similarity as distance measure. The technique is evaluated on a set of CT lung images from Japan Society of Computer Aided Diagnosis of Medical Images. Experimental results show that 3D LBP has superior performance in accuracy compare to 2D LBP. The 2D LBP and 3D LBP achieved a classification accuracy of 43% and 78% respectively.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; lung cancer detection; local binary pattern; probabilistic neural network.
国家哲学社会科学文献中心版权所有