首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Automated Periodontal Diseases Classification System
  • 本地全文:下载
  • 作者:Aliaa A.A Youssif ; Abeer Saad Gawish ; Mohammed Elsaid Moussa
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2012
  • 卷号:3
  • 期号:1
  • DOI:10.14569/IJACSA.2012.030106
  • 出版社:Science and Information Society (SAI)
  • 摘要:This paper presents an efficient and innovative system for automated classification of periodontal diseases, The strength of our technique lies in the fact that it incorporates knowledge from the patients' clinical data, along with the features automatically extracted from the Haematoxylin and Eosin (H&E) stained microscopic images. Our system uses image processing techniques based on color deconvolution, morphological operations, and watershed transforms for epithelium & connective tissue segmentation, nuclear segmentation, and extraction of the microscopic immunohistochemical features for the nuclei, dilated blood vessels & collagen fibers. Also, Feedforward Backpropagation Artificial Neural Networks are used for the classification process. We report 100% classification accuracy in correctly identifying the different periodontal diseases observed in our 30 samples dataset.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Biomedical image processing; epithelium segmentation; feature extraction; nuclear segmentation; periodontal diseases classification.
国家哲学社会科学文献中心版权所有