首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Influences of Venus’ topography on fully developed superrotation and near-surface flow
  • 其他标题:Influences of Venus’ topography on fully developed superrotation and near-surface flow
  • 本地全文:下载
  • 作者:Masaru Yamamoto ; Masaaki Takahashi
  • 期刊名称:Earth, Planets and Space
  • 电子版ISSN:1880-5981
  • 出版年度:2009
  • 卷号:61
  • 期号:10
  • 页码:e45-e48
  • DOI:10.1186/BF03352962
  • 出版社:Springer Verlag
  • 摘要:We investigate the influence of topography on Venus’ atmospheric general circulation. Based on comparative simulations with and without the Venusian topography, we elucidate the role of the topography in the fully developed superrotation. Orographically forced stationary waves are predominant over Mt. Maxwell: slightly weakening the superrotation near the cloud top. Differently from previous GCM results, the orographically forced waves do not produce significant asymmetry between the northern and southern hemispheric superrotations in the present model. Weak surface flows from mountains to lowlands are caused by the pressure dependence of the Newtonian cooling. The pattern and magnitude of the near-surface flow are largely different from those simulated in the Herrnstein and Dowling (2007) model. This implies that the parameterizations of physical processes (such as Newtonian cooling, turbulence, diffusion, and surface drag) and the model resolution could significantly influence the pattern and magnitude of the near-surface flow and the orographical forcing of planetary-scale stationary waves.
  • 关键词:Venus ;topography ;general circulation ;superrotation ;orographically-forced wave
国家哲学社会科学文献中心版权所有