首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Evaluating MT systems with BEER
  • 作者:Miloš Stanojević ; Khalil Sima’an
  • 期刊名称:The Prague Bulletin of Mathematical Linguistics
  • 印刷版ISSN:0032-6585
  • 电子版ISSN:1804-0462
  • 出版年度:2015
  • 卷号:104
  • 期号:1
  • 页码:17-26
  • DOI:10.1515/pralin-2015-0010
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:We present BEER, an open source implementation of a machine translation evaluation metric. BEER is a metric trained for high correlation with human ranking by using learning-to-rank training methods. For evaluation of lexical accuracy it uses sub-word units (character n-grams) while for measuring word order it uses hierarchical representations based on PETs (permutation trees). During the last WMT metrics tasks, BEER has shown high correlation with human judgments both on the sentence and the corpus levels. In this paper we will show how BEER can be used for (i) full evaluation of MT output, (ii) isolated evaluation of word order and (iii) tuning MT systems.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有