Ingested proteins are absorbed from the intestinal lumen via the paracellular and/or transcellular pathways, depending on their physicochemical properties. In this study, we investigated the absorption pathway(s) of ovalbumin (OVA), an egg white-allergen, as well as the mechanisms of aspirin-facilitated OVA absorption in rats. In situ intestinal re-circulating perfusion experiments showed that the absorption rate of fluorescein isothiocyanate (FITC)-labeled OVA in the distal intestine was higher than that for a marker of non-specific absorption, FITC-dextran (FD-40), and that colchicine, a general endocytosis inhibitor, suppressed OVA absorption. In the distal intestine, bafiromycin A1 and phenylarsine oxide inhibited the OVA absorption rate, whereas mehyl-β-cyclodextrin exerted no significant effects. Thus, OVA is preferentially absorbed from the distal intestine via the paracellular and receptor- and clathrin-mediated endocytic pathways. Furthermore, aspirin increased OVA absorption in the presence or absence of colchicine, indicating that aspirin facilitated OVA absorption by inducing intestinal barrier disruption and paracellular permeability.