期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2015
卷号:112
期号:36
页码:E5005-E5012
DOI:10.1073/pnas.1506076112
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceUnderstanding olfactory communication in natural vertebrate populations requires knowledge of how genes and the environment influence highly complex individual chemical fingerprints. To understand how relevant information is chemically encoded and may feed into mother-offspring recognition, we therefore generated chemical and genetic data for Antarctic fur seal mother-pup pairs. We show that pups are chemically highly similar to their mothers, reflecting a combination of genetic and environmental influences. We also reveal associations between chemical fingerprints and both genetic quality and relatedness, the former correlating positively with substance diversity and the latter encoded mainly by a small subset of substances. Dissecting apart chemical fingerprints to reveal subsets of potential biological relevance has broad implications for understanding vertebrate chemical communication. Chemical communication underpins virtually all aspects of vertebrate social life, yet remains poorly understood because of its highly complex mechanistic basis. We therefore used chemical fingerprinting of skin swabs and genetic analysis to explore the chemical cues that may underlie mother-offspring recognition in colonially breeding Antarctic fur seals. By sampling mother-offspring pairs from two different colonies, using a variety of statistical approaches and genotyping a large panel of microsatellite loci, we show that colony membership, mother-offspring similarity, heterozygosity, and genetic relatedness are all chemically encoded. Moreover, chemical similarity between mothers and offspring reflects a combination of genetic and environmental influences, the former partly encoded by substances resembling known pheromones. Our findings reveal the diversity of information contained within chemical fingerprints and have implications for understanding mother-offspring communication, kin recognition, and mate choice.