首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Multi-Layer Kernel Learning Method Faced on Roller Bearing Fault Diagnosis
  • 本地全文:下载
  • 作者:Wang, Guangbin ; He, Yilin ; He, Kuanfang
  • 期刊名称:Journal of Software
  • 印刷版ISSN:1796-217X
  • 出版年度:2012
  • 卷号:7
  • 期号:7
  • 页码:1531-1538
  • DOI:10.4304/jsw.7.7.1531-1538
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:Bearing fault is the major fault of the rotating machinery, in order to better identify the fault of bearing, the multi-layer kernel learning methods based on local tangent space alignment (LTSA) and support vector machine (SVM) are proposed. In this method, the supervised learning is embedded into the improved local tangent space alignment algorithm, realize fault feature extraction and new data processing for equipment fault signal, and then correctly classify the faults by non-linear support vector machine. The experiment result for roller bearing fault diagnosis shows that SILTSA-SVM method has better diagnosis effect to related methods.
  • 关键词:fault diagnosis;multi-layer kernel;SVM;supervised;LLTSA;LLTSA
国家哲学社会科学文献中心版权所有