首页    期刊浏览 2025年01月19日 星期日
登录注册

文章基本信息

  • 标题:The Spatial-Temporal Anomaly Detection Algorithm in Wireless Sensor Networks
  • 本地全文:下载
  • 作者:Liu Xin ; Zhang Shaoliang
  • 期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
  • 印刷版ISSN:2302-9293
  • 出版年度:2015
  • 卷号:13
  • 期号:3
  • 页码:894-903
  • DOI:10.12928/telkomnika.v13i3.2010
  • 语种:English
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:As the traditional anomaly detection algorithms cannot effectively identify the spatial-temporal anomaly of the wireless sensor networks (WSNs), taking the CO2 concentration collected by WSNs for example, we propose the spatial-temporal anomaly detection algorithm in wireless sensor network. First we use the 3 rules to realize the anomaly detection of the adaptive threshold. Then extract the eigenvalue (average) of sliding window to be detected, construct the spatial-temporal matrix for the relationship between neighbor nodes in the specified interval, use the fuzzy clustering method to analyze the eigenvalue of adjacent nodes in spatial-temporal correlation and classify them, and identify abnormal leakage probability according to the results of the classification. Finally, use real data to verify this algorithm and analyze the parameters selected , the results show that the algorithm is high detection rate and low false alarm rate.
  • 其他摘要:As the traditional anomaly detection algorithms cannot effectively identify the spatial-temporal anomaly of the wireless sensor networks (WSNs), taking the CO2 concentration collected by WSNs for example, we propose the spatial-temporal anomaly detection algorithm in wireless sensor network. First we use the 3 rules to realize the anomaly detection of the adaptive threshold. Then extract the eigenvalue (average) of sliding window to be detected, construct the spatial-temporal matrix for the relationship between neighbor nodes in the specified interval, use the fuzzy clustering method to analyze the eigenvalue of adjacent nodes in spatial-temporal correlation and classify them, and identify abnormal leakage probability according to the results of the classification. Finally, use real data to verify this algorithm and analyze the parameters selected , the results show that the algorithm is high detection rate and low false alarm rate.
国家哲学社会科学文献中心版权所有