首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Enumerating Minimal Active Metabolic Pathways by Model Generation
  • 本地全文:下载
  • 作者:Takehide Soh ; Katsumi Inoue
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2012
  • 卷号:27
  • 期号:3
  • 页码:204-212
  • DOI:10.1527/tjsai.27.204
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:In systems biology, identifying vital functions like glycolysis from a given metabolic pathway is important to understand living organisms. In this paper, we particularly focus on the problem of enumerating minimal active pathways producing target metabolites from source metabolites. We represent the problem in propositional formulas and solve it through minimal model generation. An advantage of our method is that each solution satisfies qualitative laws of biochemical reactions. Moreover, we can calculate such solutions for a cellular scale metabolic pathway within a few seconds. In experiments, we have applied our method to a whole Escherichia coli metabolic pathway. As a result, we found a minimal set of reactions corresponding to the conventional glycolysis pathway described in a biological database EcoCyc.
  • 关键词:minimal model generation ; metabolic pathway ; propositional formula ; encoding ; Systems Biology
国家哲学社会科学文献中心版权所有