首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Engineering Positive Semidefinite Kernels for Trees A Framework and a Survey
  • 本地全文:下载
  • 作者:Kilho Shin
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2009
  • 卷号:24
  • 期号:6
  • 页码:459-468
  • DOI:10.1527/tjsai.24.459
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:This paper proposes two frameworks to be used in engineering tree kernels. One is to ensure that the resulting tree kernels be positive semidefinite, while the other is for efficient algorithms to compute the kernels based on the dynamic programming. The first framework provides a method to construct tree kernels using primitive kernels for simpler structures ( e.g. for labels, strings) as building blocks and a easy-to-check sufficient condition for the resultant tree kernels to be positive semidefinite. The second framework provides a set of templates of algorithms to calculate a wide range of tree kernels in O (|X|3) or O (|X|2)-time, where |X| denotes the number of vertices of trees.
  • 关键词:machine learning ; kernel method ; convolution kernel ; tree
国家哲学社会科学文献中心版权所有