首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Component-wise EM for Mixture Model Estimation
  • 本地全文:下载
  • 作者:Jun Sakuma ; Shin Ando ; Shigenobu Kobayashi
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2008
  • 卷号:23
  • 期号:3
  • 页码:163-175
  • DOI:10.1527/tjsai.23.163
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:In the process of mixture model estimation using Expectation-Maximization (EM) methods, mixture densities are required to be measured at every step to obtain posterior probabilities. When the number of data n in a dataset or the number of mixtures m is large, the time complexity required for the evaluation of posterior probabilities is O(mn).
  • 关键词:mixture model ; expectation maximization ; mean field theory ; Gaussian mixture ; clustering ; classification ; data mining
国家哲学社会科学文献中心版权所有