首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Probabilistic Model Building Genetic Programming based on Estimation of Bayesian Network
  • 本地全文:下载
  • 作者:Yoshihiko Hasegawa ; Hitoshi Iba
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2007
  • 卷号:22
  • 期号:1
  • 页码:37-47
  • DOI:10.1527/tjsai.22.37
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:Genetic Programming (GP) is a powerful optimization algorithm, which employs the crossover for genetic operation. Because the crossover operator in GP randomly selects sub-trees, the building blocks may be destroyed by the crossover. Recently, algorithms called PMBGPs (Probabilistic Model Building GP) based on probabilistic techniques have been proposed in order to improve the problem mentioned above. We propose a new PMBGP employing Bayesian network for generating new individuals with a special chromosome called expanded parse tree , which much reduces a number of possible symbols at each node. Although the large number of symbols gives rise to the large conditional probability table and requires a lot of samples to estimate the interactions among nodes, a use of the expanded parse tree overcomes these problems. Computational experiments on two subjects demonstrate that our new PMBGP is much superior to prior probabilistic models.
  • 关键词:POLE ; genetic programming ; probabilistic model building ; Bayesian network ; expanded parse tree ; DMAX problem
国家哲学社会科学文献中心版权所有