首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Record Based Relational Peculiarity Oriented Mining
  • 本地全文:下载
  • 作者:Muneaki Ohshima ; Ning Zhong
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2007
  • 卷号:22
  • 期号:1
  • 页码:1-9
  • DOI:10.1527/tjsai.22.1
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:Peculiarity oriented mining (POM) is different from, and complementary to, existing approaches for discovering new, surprising and interesting patterns hidden in data. A main task of mining peculiarity rules is peculiarity identification. Previous methods for finding peculiar data are attribute-based approaches. This paper extends peculiarity oriented mining to relational peculiarity oriented mining (RPOM) in which peculiar data are identified on the record level. The experimental results in image sequences of tracking multiple walking people show that the proposed RPOM approach is effective.
  • 关键词:data mining ; relational peculiarity oriented mining
国家哲学社会科学文献中心版权所有