首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Innately Split Model for Job-shop Scheduling Problem
  • 本地全文:下载
  • 作者:Kokolo Ikeda ; Sigenobu Kobayashi
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2002
  • 卷号:17
  • 期号:5
  • 页码:530-538
  • DOI:10.1527/tjsai.17.530
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:Job-shop Scheduling Problem (JSP) is one of the most difficult benchmark problems. GA approaches often fail searching the global optimum because of the deception UV-structure of JSPs. In this paper, we introduce a novel framework model of GA, Innately Split Model (ISM) which prevents UV-phenomenon, and discuss on its power particularly. Next we analyze the structure of JSPs with the help of the UV-structure hypothesys, and finally we show ISM's excellent performance on JSP.
  • 关键词:job-shop scheduling problem ; genetic algorithm ; deception ; uv-phenomenon ; innately split model
国家哲学社会科学文献中心版权所有