首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:State Generalization Based on Maximum Likelihood Estimation Considering Multiple Behavior Outcomes
  • 本地全文:下载
  • 作者:Takehisa Yairi ; Koichi Hori ; Shinichi Nakasuka
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2001
  • 卷号:16
  • 期号:1
  • 页码:128-138
  • DOI:10.1527/tjsai.16.128
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:State generalization problem is a significant issue for the realization of the autonomous agents which are expected to decide and learn the proper behavior with various kinds of sensor information. This paper proposes a new state generalization method based on maximum likelihood estimation of the agent’s behavior outcomes. This provides a general framework for unifying the various conventional heuristic generalization criteria which have been used in the previous works, and a way of adapting the state space gradually to the environment.
  • 关键词:robot learning ; behavior acquisition ; state generalization ; information entropy
国家哲学社会科学文献中心版权所有