出版社:The Japanese Society for Artificial Intelligence
摘要:State generalization problem is a significant issue for the realization of the autonomous agents which are expected to decide and learn the proper behavior with various kinds of sensor information. This paper proposes a new state generalization method based on maximum likelihood estimation of the agent’s behavior outcomes. This provides a general framework for unifying the various conventional heuristic generalization criteria which have been used in the previous works, and a way of adapting the state space gradually to the environment.
关键词:robot learning ; behavior acquisition ; state generalization ; information entropy