摘要:This study investigated the behavior of the spudcan foundation of jack-up vessels of offshore wind turbines during the undrained vertical penetration into thin stiff-over-normally consolidated clay. Large deformation finite element (LDFE) analyses were used to simulate the continuous spudcan penetration into the seabed surface. Detailed parametric analysis was performed to explore a range of normalized soil properties and layer geometry and roughness of the soil–spudcan interface. The results were validated against previously reported data. The LDFE results were consistent with those of centrifuge tests. The evolving soil-failure patterns revealed soil backflow and the trapping of stronger top-layer material beneath the spudcan. The plug shape was influenced by the top layer thickness, the strength gradient of the bottom layer, and the relative strength ratio, which also affected the penetration resistance of soils. In this study, an expression was derived to quantify the plug shape with the aim of providing a theoretical basis for the design of spudcan footings with penetration resistance suitable for thin stiff-over-soft clay.