首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:An Environmentally Friendly Solution for Waste Facial Masks Recycled in Construction Materials
  • 本地全文:下载
  • 作者:Ali, Madad ; Opulencia, Maria Jade Catalan ; Chandra, Teddy
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:14
  • 页码:1-14
  • DOI:10.3390/su14148739
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:In response to the COVID-19 pandemic, single-use disposable masks saw a dramatic rise in production. Facial masks that are not properly disposed of will expose the environment to a form of non-biodegradable plastic waste that will take hundreds of years to degrade. Therefore, recycling such waste in an eco-friendly manner is imperative. Fibered or shredded waste masks can be used to make green concrete that is an environmentally friendly solution to dispose the facial masks. This study prepared six classes of concrete samples, three of which contained fibers from masks and three of which contained shredded masks at the ages of seven days and 28 days. The results show that in the seven-day and 28-day samples, mask fiber added to the mixes resulted in increased compressive strength. For seven-day and 28-day samples, the compressive strength increased by 7.2% and 10%, respectively. Despite that, the results of the shredded mask addition to concrete indicate that the increase in shredded mask volume has a minor impact on the compressive strength of the seven-day samples. An increase in shredded mask from 0.75 to 1% increased 28-day compressive strength by 14%. However, the compressive strength of the mask fiber decreased by 8 after 1% volume. According to a thermal analysis of 28-day concrete samples, as the fiber percentage increases, the mass loss percentage increases. The mass loss rate for samples containing fibers is higher than that for samples containing shredded mask pieces. In general, based on the results mentioned above, the use of fiber in concrete in its fiber state enhances its strength properties. As a result, using shredded mask pieces in concrete leads to better curing due to the reduction of residual capillary pore water loss in construction materials.
  • 关键词:facial masks; mask fiber; shredded mask; compressive strength; tensile strength
国家哲学社会科学文献中心版权所有