首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:A Comprehensive Study of Artificial Intelligence Applications for Soil Temperature Prediction in Ordinary Climate Conditions and Extremely Hot Events
  • 本地全文:下载
  • 作者:Imanian, Hanifeh ; Hiedra Cobo, Juan ; Payeur, Pierre
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:13
  • 页码:1-25
  • DOI:10.3390/su14138065
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:Soil temperature is a fundamental parameter in water resources and irrigation engineering. A cost-effective model that can accurately forecast soil temperature is urgently needed. Recently, many studies have applied artificial intelligence (AI) at both surface and underground levels for soil temperature predictions. In the present study, attempts are made to deliver a comprehensive and detailed assessment of the performance of a wide range of AI approaches in soil temperature prediction. In this regard, thirteen approaches, from classic regressions to well-established methods of random forest and gradient boosting to more advanced AI techniques, such as multi-layer perceptron and deep learning, are taken into account. Meanwhile, great varieties of land and atmospheric variables are applied as model inputs. A sensitivity analysis was conducted on input climate variables to determine the importance of each variable in predicting soil temperature. This examination reduced the number of input variables from 8 to 7, which decreased the simulation load. Additionally, this showed that air temperature and solar radiation play the most important roles in soil temperature prediction, while precipitation can be neglected in forecast AI models. The comparison of soil temperature predicted by different AI models showed that deep learning demonstrated the best performance with R-squared of 0.980 and NRMSE of 2.237%, followed by multi-layer perceptron with R-squared of 0.980 and NRMSE of 2.266%. In addition, the performance of developed AI models was evaluated in extremely hot events since heat warnings are essential to protect lives and properties. The assessment showed that deep learning and multi-layer perceptron methods still have the best prediction. However, their R-squared decreased to 0.862 and 0.859, and NRMSE increased to 6.519% and 6.601%, respectively.
  • 关键词:artificial intelligence; climate prediction; deep learning; extreme heat events; multi-layer perceptron; neural network; regression; soil temperature
国家哲学社会科学文献中心版权所有