首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:New Findings From Explainable SYM-H Forecasting Using Gradient Boosting Machines
  • 本地全文:下载
  • 作者:Daniel Iong ; Yang Chen ; Gabor Toth
  • 期刊名称:Space Weather
  • 印刷版ISSN:1542-7390
  • 出版年度:2022
  • 卷号:20
  • 期号:8
  • 页码:1-23
  • DOI:10.1029/2021SW002928
  • 语种:English
  • 出版社:American Geophysical Union
  • 摘要:In this work, we develop gradient boosting machines (GBMs) for forecasting the SYM-H index multiple hours ahead using different combinations of solar wind and interplanetary magnetic field (IMF) parameters, derived parameters, and past SYM-H values. Using Shapley Additive Explanation values to quantify the contributions from each input to predictions of the SYM-H index from GBMs, we show that our predictions are consistent with physical understanding while also providing insight into the complex relationship between the solar wind and Earth's ring current. In particular, we found that feature contributions vary depending on the storm phase. We also perform a direct comparison between GBMs and neural networks presented in prior publications for forecasting the SYM-H index by training, validating, and testing them on the same data. We find that the GBMs yield a statistically significant improvement in root mean squared error over the best published black-box neural network schemes and the Burton equation.
国家哲学社会科学文献中心版权所有