首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Massive perturbations to atmospheric sulfur in the aftermath of the Chicxulub impact
  • 本地全文:下载
  • 作者:Christopher K. Junium ; Aubrey L. Zerkle ; James D. Witts
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:14
  • DOI:10.1073/pnas.2119194119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Sulfur isotopes confirm a key role for atmospheric sulfur gases in climatic cooling, mass extinction, and the demise of dinosaurs and other global biota after the Chicxulub bolide impact at the Cretaceous–Paleogene boundary. The sulfur isotope anomalies are confined to beds containing ejecta and, in the immediately overlying sediments, are temporally unrelated to known episodes of volcanism that also bracket this event, further addressing the controversial role of the Deccan Traps in the extinction. Sulfate aerosols have long been implicated as a primary forcing agent of climate change and mass extinction in the aftermath of the end-Cretaceous Chicxulub bolide impact. However, uncertainty remains regarding the quantity, residence time, and degree to which impact-derived sulfur transited the stratosphere, where its climatic impact would have been maximized. Here, we present evidence of mass-independent fractionation of sulfur isotopes (S-MIF) preserved in Chicxulub impact ejecta materials deposited in a marine environment in the Gulf Coastal Plain of North America. The mass anomalous sulfur is present in Cretaceous–Paleogene event deposits but also extends into Early Paleogene sediments. These measurements cannot be explained by mass conservation effects or thermochemical sulfate reduction and therefore require sulfur-bearing gases in an atmosphere substantially different from the modern. Our data cannot discriminate between potential source reaction(s) that produced the S-MIF, but stratospheric photolysis of SO 2 derived from the target rock or carbonyl sulfide produced by biomass burning are the most parsimonious explanations. Given that the ultimate fate of both of these gases is oxidation to sulfate aerosols, our data provide direct evidence for a long hypothesized primary role for sulfate aerosols in the postimpact winter and global mass extinction.
  • 关键词:enK-Pg extinctionsulfur isotopesmass-independent fractionationmass extinctionsulfur cycle
国家哲学社会科学文献中心版权所有